Search results for "Markov Random Field"

showing 10 items of 27 documents

Two-Stage Bayesian Approach for GWAS With Known Genealogy

2019

Genome-wide association studies (GWAS) aim to assess relationships between single nucleotide polymorphisms (SNPs) and diseases. They are one of the most popular problems in genetics, and have some peculiarities given the large number of SNPs compared to the number of subjects in the study. Individuals might not be independent, especially in animal breeding studies or genetic diseases in isolated populations with highly inbred individuals. We propose a family-based GWAS model in a two-stage approach comprising a dimension reduction and a subsequent model selection. The first stage, in which the genetic relatedness between the subjects is taken into account, selects the promising SNPs. The se…

0301 basic medicineStatistics and ProbabilityBayesian probabilityPopulationSingle-nucleotide polymorphismGenome-wide association studyComputational biologyEstadísticaBiologyKinship coefficientModel selection01 natural sciencesBeta-thalassemia010104 statistics & probability03 medical and health sciencesBeta-thalassemia disorderModelsRobust prior distributionRegularizationDiscrete Mathematics and Combinatorics0101 mathematicsStage (cooking)Genetic associationGenome-wide associationModel selectionVariable-selectionProbability and statisticsBayes factorRegressionBayes factor030104 developmental biologyPhenotypeStatistics Probability and UncertaintyGaussian Markov random field
researchProduct

Detecting faulty wireless sensor nodes through Stochastic classification

2011

In many distributed systems, the possibility to adapt the behavior of the involved resources in response to unforeseen failures is an important requirement in order to significantly reduce the costs of management. Autonomous detection of faulty entities, however, is often a challenging task, especially when no direct human intervention is possible, as is the case for many scenarios involving Wireless Sensor Networks (WSNs), which usually operate in inaccessible and hostile environments. This paper presents an unsupervised approach for identifying faulty sensor nodes within a WSN. The proposed algorithm uses a probabilistic approach based on Markov Random Fields, requiring exclusively an ana…

Brooks–Iyengar algorithmComputer scienceDistributed computingReal-time computingProbabilistic logicMarkov processMarkov Random Fieldsymbols.namesakeKey distribution in wireless sensor networksWireless Sensor Networks.Autonomic ComputingSensor nodesymbolsOverhead (computing)Algorithm designWireless sensor network2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)
researchProduct

Hidden Markov random field model and Broyden–Fletcher–Goldfarb–Shanno algorithm for brain image segmentation

2018

International audience; Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. …

Dice coefficient criterionComputer scienceBrain image segmentation02 engineering and technologyMR-images[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Theoretical Computer Science03 medical and health sciences0302 clinical medicineArtificial Intelligence0202 electrical engineering electronic engineering information engineering[INFO]Computer Science [cs]SegmentationBrain magnetic resonance imagingHidden Markov modelRandom fieldbusiness.industryBroyden-Fletcher-Goldfarb-Shanno algorithmPattern recognitionImage segmentationhidden Markov random fieldMinimization3. Good healthHomogeneousBroyden–Fletcher–Goldfarb–Shanno algorithm020201 artificial intelligence & image processingAutomatic segmentationArtificial intelligenceHidden Markov random fieldbusiness030217 neurology & neurosurgerySoftwareJournal of Experimental & Theoretical Artificial Intelligence
researchProduct

Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis

2016

This paper studies a combination of generative Markov random field (MRF) models and discriminatively trained deep convolutional neural networks (dCNNs) for synthesizing 2D images. The generative MRF acts on higher-levels of a dCNN feature pyramid, controling the image layout at an abstract level. We apply the method to both photographic and non-photo-realistic (artwork) synthesis tasks. The MRF regularizer prevents over-excitation artifacts and reduces implausible feature mixtures common to previous dCNN inversion approaches, permitting synthezing photographic content with increased visual plausibility. Unlike standard MRF-based texture synthesis, the combined system can both match and adap…

FOS: Computer and information sciencesRandom fieldMarkov random fieldArtificial neural networkMarkov chainComputer sciencebusiness.industryComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION020207 software engineeringPattern recognition02 engineering and technologyIterative reconstructionConvolutional neural networkComputingMethodologies_PATTERNRECOGNITION0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer visionArtificial intelligencebusinessGenerative grammarTexture synthesis2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
researchProduct

The Max-Product Algorithm Viewed as Linear Data-Fusion: A Distributed Detection Scenario

2019

In this paper, we disclose the statistical behavior of the max-product algorithm configured to solve a maximum a posteriori (MAP) estimation problem in a network of distributed agents. Specifically, we first build a distributed hypothesis test conducted by a max-product iteration over a binary-valued pairwise Markov random field and show that the decision variables obtained are linear combinations of the local log-likelihood ratios observed in the network. Then, we use these linear combinations to formulate the system performance in terms of the false-alarm and detection probabilities. Our findings indicate that, in the hypothesis test concerned, the optimal performance of the max-product a…

FOS: Computer and information sciencesfactor graphsComputer scienceComputer Science - Information TheoryMarkovin ketjut02 engineering and technologyMarkov random fieldsalgoritmit0202 electrical engineering electronic engineering information engineeringMaximum a posteriori estimationmax-product algorithmElectrical and Electronic EngineeringLinear combinationStatistical hypothesis testingdistributed systemsMarkov random fieldspectrum sensingApplied MathematicsNode (networking)Information Theory (cs.IT)linear data-fusionApproximation algorithm020206 networking & telecommunicationsComputer Science Applicationssum-product algorithmPairwise comparisonRandom variableAlgorithmstatistical inference
researchProduct

Prediction and Surveillance Sampling Assessment in Plant Nurseries and Fields

2022

In this paper, we propose a structured additive regression (STAR) model for modeling the occurrence of a disease in fields or nurseries. The methodological approach involves a Gaussian field (GF) affected by a spatial process represented by an approximation to a Gaussian Markov random field (GMRF). This modeling allows the building of maps with prediction probabilities regarding the presence of a disease in plants using Bayesian kriging. The advantage of this modeling is its computational benefit when compared with known spatial hierarchical models and with the Bayesian inference based on Markov chain Monte Carlo (MCMC) methods. Inference through the use of the integrated nested Laplace app…

Fluid Flow and Transfer ProcessesEstadística bayesianaProcess Chemistry and TechnologyGeneral EngineeringModels matemàticsGeneral Materials ScienceBayesian kriging; Bayesian hierarchical models; Gaussian Markov random field (GMRF); integrated nested Laplace approximation (INLA); stochastic partial differential equation (SPDE)InstrumentationComputer Science ApplicationsApplied Sciences
researchProduct

Conjugate Gradient Method for Brain Magnetic Resonance Images Segmentation

2018

Part 8: Pattern Recognition and Image Processing; International audience; Image segmentation is the process of partitioning the image into regions of interest in order to provide a meaningful representation of information. Nowadays, segmentation has become a necessity in many practical medical imaging methods as locating tumors and diseases. Hidden Markov Random Field model is one of several techniques used in image segmentation. It provides an elegant way to model the segmentation process. This modeling leads to the minimization of an objective function. Conjugate Gradient algorithm (CG) is one of the best known optimization techniques. This paper proposes the use of the nonlinear Conjugat…

Ground truthComputer sciencebusiness.industryThe Conjugate Gradient algorithmComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONBrain image segmentationPattern recognition02 engineering and technologyImage segmentationImage (mathematics)Nonlinear conjugate gradient method03 medical and health sciences0302 clinical medicineDice Coefficient metricHidden Markov Random FieldConjugate gradient methodComputer Science::Computer Vision and Pattern Recognition0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingSegmentation[INFO]Computer Science [cs]Artificial intelligencebusinessHidden Markov random field030217 neurology & neurosurgery
researchProduct

A Novel Approach for Faulty Sensor Detection and Data Correction in Wireless Sensor Network

2013

he main Wireless Sensor Networks purpose is represented by areas of interest monitoring. Even if the Wireless sensor network is properly initialized, errors can occur during its monitoring tasks. The present work describes an approach for detecting faulty sensors in Wireless Sensor Network and for correcting their corrupted data. The approach is based on the assumption that exist a spatio-temporal cross- correlations among sensors. Two sequential mathematical tools are used. The first stage is a probabilistic tools, namely Markov Random Field, for a two-fold sensor classification (working or damaged). The last stage is represented by the Locally Weighted Regression model, a learning techniq…

Locally Weighted RegressionSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniBrooks–Iyengar algorithmMarkov random fieldVisual sensor networkComputer scienceProbabilistic logicMarkov processMarkov Random FieldSoft sensorcomputer.software_genresymbols.namesakesymbolsMobile wireless sensor networkData miningInternet of ThingcomputerWireless sensor networkWireless Sensor Network2013 Eighth International Conference on Broadband and Wireless Computing, Communication and Applications
researchProduct

Comparison of Different Hypotheses Regarding the Spread of Alzheimer’s Disease Using Markov Random Fields and Multimodal Imaging

2018

Alzheimer’s disease (AD) is characterized by a cascade of pathological processes that can be assessed in vivo using different neuroimaging methods. Recent research suggests a systematic sequence of pathogenic events on a global biomarker level, but little is known about the associations and dependencies of distinct lesion patterns on a regional level. Markov random fields are a probabilistic graphical modeling approach that represent the interaction between individual random variables by an undirected graph. We propose the novel application of this approach to study the interregional associations and dependencies between multimodal imaging markers of AD pathology and to compare different hy…

Male0301 basic medicineComputer scienceModels Neurologicalphysiopathology [Brain]Machine learningcomputer.software_genrephysiopathology [Alzheimer Disease]Multimodal Imaging03 medical and health sciences0302 clinical medicineNeuroimagingAlzheimer DiseaseHumansddc:610Graphical modeldiagnostic imaging [Brain]Default mode networkAgedModels StatisticalRandom fieldMarkov random fieldMarkov chainbusiness.industryGeneral NeuroscienceProbabilistic logicBrainGeneral MedicineMagnetic Resonance ImagingMarkov ChainsPsychiatry and Mental healthClinical Psychology030104 developmental biologyPositron-Emission TomographyGraph (abstract data type)FemaleArtificial intelligenceGeriatrics and Gerontologybusinessdiagnostic imaging [Alzheimer Disease]computer030217 neurology & neurosurgeryJournal of Alzheimer's Disease
researchProduct

ℓ1-Penalized Methods in High-Dimensional Gaussian Markov Random Fields

2016

In the last 20 years, we have witnessed the dramatic development of new data acquisition technologies allowing to collect massive amount of data with relatively low cost. is new feature leads Donoho to define the twenty-first century as the century of data. A major characteristic of this modern data set is that the number of measured variables is larger than the sample size; the word high-dimensional data analysis is referred to the statistical methods developed to make inference with this new kind of data. This chapter is devoted to the study of some of the most recent ℓ1-penalized methods proposed in the literature to make sparse inference in a Gaussian Markov random field (GMRF) defined …

Markov kernelMarkov random fieldMarkov chainComputer scienceStructured Graphical lassoVariable-order Markov model010103 numerical & computational mathematicsMarkov Random FieldMarkov model01 natural sciencesGaussian random field010104 statistics & probabilityHigh-Dimensional InferenceMarkov renewal processTuning Parameter SelectionMarkov propertyJoint Graphical lassoStatistical physics0101 mathematicsSettore SECS-S/01 - StatisticaGraphical lasso
researchProduct